A trans-Effect in Gallium Complexes: the Crystal Structure of Trichloro-(2,2',2"-terpyridyl)gallium(III)

By G. BERAN, A. J. CARTY, H. A. PATEL, and GUS J. PALENIK*

(Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada)

Summary The molecular structure of $GaCl_3$ -terpyridyl is interpreted in terms of a *trans*-effect in d^{10} complexes which influences the M-X (X = halogen) distances and is instrumental in determining the geometry of the metalhalide complexes.

The first structurally characterized octahedral complex ion of gallium, dichlorobis(bipyridyl)gallium(III), has a *cis*configuration with anomalous Ga–Cl and Ga–N bond lengths.¹ A related complex, trichloroterpyridylgallium(III), GaCl₃(terpy), where (terpy) = 2,2',2''-terpyridyl has been prepared and characterized by spectral and X-ray diffraction studies. Although the spectral results favoured a five-co-ordinate formulation, the X-ray crystal structure study revealed an octahedral structure. The molecular dimensions demonstrate that the Ga–Cl bond length is dependent on the nature of the ligand *trans* to the chlorine. These results also suggest an explanation for the *cis*geometry of GaCl₂(bipy)₂⁺ and illustrate the dangers inherent in the elucidation of molecular structure by far-i.r. spectroscopy.

Colourless crystals of $GaX_3(terpy)$ (X = Cl, Br, or I) were obtained from the reaction of GaX_3 and (terpy) in ethanol. A simple interpretation of the far-i.r. spectra of

FIGURE. A view of trichloroterpyridylgallium(III) indicating the geometry and atomic numbering.

GaX₃(terpy) (X = Cl, ν 342 vs, 322 m, 268 vs, 220 s; X = Br, ν 333 m, 305 s, 285 vs, 270 vs, 210 m; X = I, ν 324 m, 267 m, 253 s, 228 vs, 212 m cm⁻¹) in terms of bond-stretching co-ordinates suggests ν (Ga–Cl) at 342 cm⁻¹ and ν (Ga–N) at 268 cm⁻¹. The structure Ga(terpy)₂³⁺GaCl₆³⁻ can be eliminated[†] but one cannot readily distinguish between a pentaco-ordinated GaCl₂(terpy)⁺ or octahedral GaCl₃(terpy). A comparison with GaCl₂(bipy)₂⁺ [ν (Ga–Cl) 302 cm⁻¹] and GaCl₃(py) [ν (Ga–Cl) 392 cm⁻¹] favoured the pentaco-ordinated species since ν (M–Cl) frequencies generally increase with a decrease in the co-ordination number of the metal ion.

Crystal data: $C_{15}H_{11}N_3Cl_3Ga$, M 409·1, monoclinic crystals, space group $P2_1/c$ (No. 14), $a = 8\cdot324(3)$, b =14·120(8), $c = 14\cdot223(5)$ Å, $\beta = 110\cdot77(2)^\circ$, $U = 1575\cdot1$ Å³, $D_m = 1\cdot702$ g/cm³, Z = 4, $D_c = 1\cdot725$ g/cm³.

The intensities of 2820 (2174 non-zero) independent reflections ($2\theta \leq 135^{\circ}$ for Cu radiation) were measured with a G.E. diffractometer. The structure was solved by the heavy-atom method and refined by least-squares methods using anisotropic thermal parameters to an R of 0.063.

The molecular geometry and atomic numbering are illustrated in the Figure. The co-ordination about the gallium atom is octahedral, not pentaco-ordinated as expected. The pertinent Ga-ligand distances are Ga-Cl(1) 2.403(2), Ga-Cl(2) 2.329(3), Ga-Cl(3) 2.235(3), Ga-N(1) 2.115(6), Ga-N(2) of 2.034(7), and Ga-N(3) 2.110(6) Å.

The distances in the terpyridyl group are normal, with an average C-C(ring) distance of 1.382, C-C(inter-ring) distance average of 1.471, and the C-N bond average of 1.337 Å. The Ga-N(1) and Ga-N(3) distances are identical with the average value of 2.103(6) Å reported¹ for GaCl₂-(bipy)₂+ and are close to the values 2.097(6) and 2.182(5) Å found in GaH·EDTA·H₂O.² (EDTA = ethylenediamine-tetra-acetate). Since the Ga-N distance is approximately constant in all three compounds, a Ga-N single bond is assumed to be about 2.10 Å.

The most striking feature of the structure is that the three Ga-Cl bonds are all significantly different. The difference between the trans Ga-Cl(1) and Ga-Cl(2) bonds appears to be a steric effect resulting from the restricted geometry of the terpyridyl ligand.[†] The difference between the Ga-Cl(3) bond distance and the other two Ga-Cl bonds is the result of a trans-effect; namely, a Ga-Cl trans to a Ga-N is shorter than a Ga-Cl trans to Ga-Cl. The Ga-Cl(3) distance agrees well with the Ga-Cl distance of $2 \cdot 264(2)$ Å found in *cis*-GaCl₂(bipy⁺₂). If we assume that a Ga-N bond distance of 2.10 Å represents a single bond, then the Ga-Cl(1) distance is also a single bond but the Ga-Cl(2) and Ga-Cl(3) bonds are stronger than a single bond. The alternative suggestion that the Ga-Cl(3) is a normal single bond and the other bonds are weaker is not consistent with the GaH·EDTA·H₂O structure.² Tetrahedral zinc chloride-nitrogen base adducts also show

 $\dagger v_3$ for the unknown GaCl₆³⁻ ion should be below 300 cm⁻¹.

¹ The nonbonded contacts Cl(1)-N(1) 3.174(8), Cl(1)-N(2) 2.997(7), Cl(1)-N(3) 3.172(7), Cl(2)-N(1) 3.169(7), Cl(2)-N(2) 3.119(6), and Cl(2)-N(3) 3.118(7) Å support this view.

variable Zn-X (X = halogen) bonds but the Zn-N bonds are constant.³ The conclusion is that electronic effects in d^{10} metal complexes influence the M-X bonds, with the M-N bonds remaining nearly constant. Furthermore, the cis-configuration observed in the GaCl₂(bipy)₂+ complex is simply a manifestation of this trans-effect since stronger Ga-Cl bonds will be formed if the Cl atoms are cis to each other.

The X-ray results for GaCl₂(bipy)₂+ and GaCl₃(terpy) also illustrate the inadequacies of far-i.r. spectroscopy for structural deductions. Although this technique has been widely used recently,⁴ the correct structures for the relatively simple complexes GaCl₃(bipy) and GaCl₃(terpy) could not be deduced from the far-i.r. data. In the latter complex,

¹ R. Restivo and G. J. Palenik, Chem. Comm., 1969, 867.

- C. H. L. Kennard, Inorg. Chim. Acta, 1967, 1, 347.
 H. S. Preston and C. H. L. Kennard, J. Chem. Soc. (A), 1969, 1956.
- ⁴ R. H. Nuttall, Talanta, 1968, 15, 157.

the presence of different Ga-Cl bonds, one of which was stronger than in GaCl₂(bipy)₂⁺, could account for the unexpected ν (Ga-Cl) frequency of 343 cm⁻¹. Moreover, only one readily distinguishable ν (Ga–Cl) mode was found compared to the three ν (Ga–Cl) (2 $a_1 + b_2$) expected for a trans-MX₃L₃ skeleton. In GaCl₃(bipy) the accidental degeneracy of the two v(Ga-Cl) modes expected for a ciscation led to the assumption of a trans-geometry. The obvious conclusion is that i.r. results are best interpreted with a knowledge of the molecular structure determined by X-ray studies.

We thank the National Research Council of Canada for financial support.

(Received, December 8th, 1969; Com. 1854.)